On this project BIM models are used in many ways to achieve and support ambitious green goals. For example a CO2 footprint was calculated based on architectural model quantities, energy simulations were made using an architectural model as the basis for an energy model and energy consumption was estimated via the BIM-based energy simulations and energy-efficient solutions.

A BIM model also provides a prototype of the building in its early stages before design decisions are locked, allowing changes and new innovative solutions to be piloted before the building is constructed. The architectural model was also used to create a virtual model, which can be used to produce fly-overs, rendered project images and videos to communicate the project’s final outcome in an illustrative way.

In practice, a multi-disciplinary model has been used for communication purposes and the visualization of design solutions. Logistics and site planning helps visualize the current situation on site and it brings more accuracy to the construction management.

BIM has also been used in safety planning to prevent accidents. Site and safety modelling covers temporary structures such as site office, storage areas, roads, cranes, falling prevention, marking of dangerous areas and other safety equipments including connection points for safety harnesses.

Prefabricated modules were also modeled with a detail level and linked to the structural model. Prefabrication increases productivity, saves time, it helps to prevent accidents and improves installation ergonomics.

In 2011 Manskun Rasti was chosen as the best Finnish building information modeling project by Tekla and was also the winner of the BIM Project category of the Tekla Global BIM Awards Competition. In addition, Manskun Rasti was selected as the Site of the Year 2011 by Rakennuslehti, a Finnish trade journal.